In-Class Exam \#3 Review Sheet, Covers 11.5-11.10 Math 280, Vanden Eynden

In \#1 - \#9, determine whether the series converges conditionally, converges absolutely, or diverges. Name any relevant theorems, tests, facts and/or mathematical reasoning you used to reach your conclusion. If applicable, make sure to show that the series meets the conditions of the test you use.

1. $\sum_{n=1}^{\infty} \frac{(-1)^{n} 3^{2 n+1}}{4^{3 n}}$
2. $\sum_{n=1}^{\infty} \frac{5^{n}}{n^{2} 4^{n+1}}$
3. $\sum_{n=1}^{\infty} \frac{2 n^{2}+1}{n!}$
4. $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{2 n}-3}$
5. $\sum_{n=1}^{\infty} \frac{\cos ^{2} n}{4+4^{n}}$
6. $\quad \sum_{n=1}^{\infty} \frac{2 \cdot 5 \cdot 8 \cdots(3 n-1)}{3 \cdot 5 \cdot 7 \cdots(2 n+1)}$
7. $\quad \sum_{n=1}^{\infty} \frac{\sin \sqrt{n}}{n^{2}}$
8. $\quad \sum_{n=1}^{\infty} \frac{(n!)^{n}}{n^{4 n}}$
9. $\quad \sum_{n=1}^{\infty} \frac{n!}{e^{n^{2}}}$
10. a. Show that the series $\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{4^{n}}$ is convergent.
b. How many terms of the series do you need to add in order to find the sum with an error less than 0.001 ?
c. Approximate the sum of this series accurate to 3 decimal places.

In \#11-\#13, find the radius of convergence and the interval of convergence for the power series.
11. $\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{n}}{n^{2} 5^{n}}$
12. $\sum_{n=1}^{\infty} \frac{2^{n}(x-2)^{n}}{(n+2)!}$
13. $\sum_{n=1}^{\infty} n^{n}(x+1)^{n}$

In \#14-16, find a power series representation for the function $f(x)$ and state its radius of convergence.
14. $f(x)=\frac{5}{1-4 x^{2}}$
15. $f(x)=\frac{x^{3}}{(2+x)^{2}}$
16. $f(x)=\ln (x+5)$

In problems\#17-21, find the Maclaurin series for f and its radius of convergence. To find each power series, you may use either the direct method (definition of a Maclaurin series, taking several derivatives and finding a pattern) or use known series such as geometric series, binomial series or the Maclaurin series shown in Section 11.10, Table 1, pg 762.
17. $f(x)=2 x e^{3 x}$
18. $f(x)=\sin \left(x^{4}\right)$
19. $f(x)=x \cos \left(2 x^{2}\right)$
20. $f(x)=3^{x}$
21. $f(x)=\sqrt{1+x^{4}}$
22. Use the Maclaurin series found in \#21 to approximate $\int_{0}^{1} \sqrt{1+x^{4}} d x$ correct to 2 decimal places.
23. Find the taylor series for $f(x)=\frac{1}{x}$ centered at $a=-3$. Also f ind its radius of convergence, R.
(A) Geometric Series: The series $\sum_{n=1}^{\infty} a r^{n-1}=a+a r+a r^{2}+a r^{3}+\cdots$ is convergent if $|r|<1$ and its sum is $\sum_{n=1}^{\infty} a r^{n-1}=\frac{a}{1-r}$. If $|r| \geq 1$, the series is divergent.
(B) Test for Divergence: If $\lim _{n \rightarrow \infty} a_{n}$ does not exist or if $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then the series $\sum_{n=1}^{\infty} a_{n}$ is divergent.
(C) Integral Test: Suppose f is a continuous, positive, decreasing function on $[1, \infty)$ and let $a_{n}=f(n)$. Then the series $\sum_{n=1}^{\infty} a_{n}$ is convergent if and only if the improper integral $\int_{1}^{\infty} f(x) d x$ is convergent. In other words,
(i) If $\int_{1}^{\infty} f(x) d x$ is convergent, then $\sum_{n=1}^{\infty} a_{n}$ is convergent.
(ii) If $\int_{1}^{\infty} f(x) d x$ is divergent, then $\sum_{n=1}^{\infty} a_{n}$ is divergent.
(D) P-series: The series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ is convergent if $p>1$ and divergent if $p \leq 1$.
(E) Remainder Estimate for the Integral Test: Suppose $f(k)=a_{k}$, where f is a continuous, positive, decreasing function for $x \geq n$ and $\sum a_{n}$ is convergent. If $R_{n}=S-S_{n}$, then $\int_{n+1}^{\infty} f(x) d x \leq R_{n} \leq \int_{n}^{\infty} f(x) d x$.

(F) Series Sum Estimate for the Integral Test:
 $$
s_{n}+\int_{n+1}^{\infty} f(x) d x \leq s \leq s_{n}+\int_{n}^{\infty} f(x) d x
$$

The midpoint of this interval is an estimate of s, with error < (half the interval's length).
(G) The Comparison Test: If $\sum a_{n}$ and $\sum b_{n}$ are series with positive terms and
(i) If $\sum b_{n}$ is convergent and $a_{n} \leq b_{n}$ for all n, then $\sum a_{n}$ is also convergent.
(ii) If $\sum b_{n}$ is divergent and $a_{n} \geq b_{n}$ for all n, then $\sum a_{n}$ is also divergent.
(H) The Limit Comparison test: Suppose $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ are series with positive terms. If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=c$ where c is a finite number and $c>0$, then either both series converge or both diverge.

(I) The Alternating Series Test:

If the alternating series $\sum_{n=1}^{\infty}(-1)^{n-1} b_{n}=b_{1}-b_{2}+b_{3}-b_{4}+b_{5}-b_{6}+\ldots$. . where $b_{n}>0$ satisfies
(i) $b_{n+1} \leq b_{n}$
(ii) $\lim _{n \rightarrow \infty} b_{n}=0$
then the series converges.

(J) Alternating Series Estimation Theorem:

If $s=\sum_{n=1}^{\infty}(-1)^{n-1} b_{n}$ is the sum of an alternating series that satisfies
(i) $0 \leq b_{n+1} \leq b_{n}$
and
(ii) $\lim _{n \rightarrow \infty} b_{n}=0$

Then

$$
\left|R_{n}\right|=\left|s-s_{n}\right| \leq b_{n+1}
$$

(K) Absolute Convergence:

If $\sum\left|a_{n}\right|$ converges, then $\sum a_{n}$ converges (absolutely).

(L) The Ratio Test for Absolute Convergence:

Let $\sum a_{n}$ be a series with non-zero terms and suppose $\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=L$;
i. If $\mathrm{L}<1$, the series $\sum a_{n}$ is absolutely convergent.
ii. If $\mathrm{L}>1$ or $L=\infty$, then the series $\sum a_{n}$ diverges.
iii. If $\mathrm{L}=1$, the test is inconclusive. The series may be convergent or divergent. Use another test (not The Root Test)

(M) The Root Test for Absolute Convergence:

Suppose $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=L$
i. If $\mathrm{L}<1$, then the series $\sum a_{n}$ is absolutely convergent.
ii. If $\mathrm{L}>1$ or $L=\infty$, then the series $\sum a_{n}$ diverges.
iii. If $\mathrm{L}=1$, the test is inconclusive. The series may be convergent or divergent. Use another test (not The Ratio Test)

